Welcome To NetWork

•~~~~ยินดีต้อนเข้าสู่เว็บไซต์ ระบบเครือข่ายคอมพิวเตอร์ จัดทำโดย นายสิทธิพงษ์ ธรรมสาร แผนกคอมพิวเตอร์ธุรกิจเสนอ อาจารย์ ศิระ ทองสาย วิทยาลัยเทคนิคพะเยา~~~~•

ลองเลือกดูโฆษณาที่ตรงตามความต้องการของคุณดูสิน๊ะคũ

<p"ไทยเที่ยวไทยครึกครื้น เศรษฐกิจไทยคึกคัก"

ยินดีต้อนรับเข้าสู่ เว็บไซต์ ระบบเครือข่ายคอมพิวเตอร์  
ขอบคุณทุกท่านที่ได้มาศึกษาสารพันอาหาร นานาชนิดครับ
♥`

 

Custom Search

วันอังคารที่ 17 มีนาคม พ.ศ. 2552

องค์ประกอบของเครือข่าย

องค์ประกอบของเครือข่าย
คอมพิวเตอร์แน่นอนที่สุด!! เครือข่ายคอมพิวเตอร์ก็จะต้องมีคอมพิวเตอร์ เป็นองค์ประกอบพื้นฐาน ซึ่งเครื่องคอมพิวเตอร์ที่เชื่อมต่อเข้ากับเครือข่ายนั้น ไม่จำเป็นต้องเป็นรุ่น หรือยี่ห้อเดียวกัน หรือประเภทเดียวกัน เราสามารถนำเครื่องคอมพิวเตอร์โน๊ตบุค เชื่อมต่อเข้ากับคอมพิวเตอร์ส่วนบุคคลได้

อุปกรณ์คอมพิวเตอร์อื่นๆ
เช่น เครื่องพิมพ์ แฟกซ์ เทปสำรองข้อมูล หรืออุปกรณ์จัดเก็บข้อมูลอื่นๆ เป็นต้น โดยเมื่ออุปกรณ์เหล่านี้เชื่อมต่อกับเครือข่ายแล้ว ผู้ใช้ในเครือข่ายก็สามารถใช้งานอุปกรณ์เหล่านี้ได้โดยเรียกใช้ผ่านเครื่องคอมพิวเตอร์ของผู้ใช้เอง เช่น ส่งเอกสารไปพิมพ์ที่เครื่องพิมพ์สำหรับเครือข่าย เป็นต้น

สายเคเบิล
สายเคเบิล คือ สายสัญญาณที่ใช้เชื่อมต่อคอมพิวเตอร์และอุปกรณ์อื่นๆ ในเครือข่าย ซึ่งปัจจุบันมีอยู่หลายแบบด้วยกัน แต่ละแบบจะมีความเร็วในการรับส่งข้อมูล และราคาแตกต่างกันไป ส่วนการจะเลือกใช้สายเคเบิลแบบใดนั้น ขึ้นอยู่กับขนาดและประเภทของเครือข่าย

คอนเน็กเตอร์ (connector)
เป็นอุปกรณ์ที่ใช้เชื่อมต่อระหว่างเครือข่ายสองเครือข่ายเข้าด้วยกัน เมื่อเชื่อมเครือข่ายเข้าด้วยกันแล้ว คอมพิวเตอร์ทั้งสองเครือข่ายก็สามารถแลกเปลี่ยนข้อมูลระหว่างกันได้ เสมือนเป็นเครือข่ายเดียวกัน ตัวอย่างคอนเน็กเตอร์ที่พบเห็นกันโดยทั่วไป คือ บริดจ์ (bridge)

การ์ดเชื่อมต่อเครือข่าย (Network Interface Card: NIC)
สำหรับอุปกรณ์ชนิดนี้จะใช้เชื่อมระหว่างคอมพิวเตอร์กับสายเคเบิล การ์ดนี้ส่วนใหญ่จะติดตั้งภายในเครื่องคอมพิวเตอร์ โดยเสียบลงบนเมนบอร์ด (mainboard) ส่วนพอร์ตในการต่อกับสายเคเบิลจะอยู่ทางด้านหลังเครื่องคอมพิวเตอร์

ซอฟต์แวร์เครือข่าย
เมื่อเรานำเอาอุปกรณ์ต่างๆ มาเชื่อมต่อกันแล้ว ระบบเครือข่ายก็ยังจะทำงานไม่ได้ เครือข่ายจำเป็นต้องมีซอฟต์แวร์ ซึ่งเป็นชุดโปรแกรมที่ใช้ในการติดตั้งอุปกรณ์ เพื่อทำให้ระบบปฏิบัติการรู้จักกับอุปกรณ์เครือข่ายนั้น นอกจากนี้ยังรวมถึงโปรแกรมระบบปฏิบัติการเครือข่ายซึ่งจะแตกต่างกับระบบปฏิบัติการทั่วไป และโปรแกรมต่างๆ ที่ใช้งานในเครือข่ายด้วย เช่น เวิร์ดโปรเซสเซอร์ สเปรดชีต โปรแกรมวาดภาพ หรือโปรแกรมสำหรับส่งข้อมูลหรือข้อความระหว่างเครื่องคอมพิวเตอร์ด้วย เป็นต้น

วันศุกร์ที่ 6 มีนาคม พ.ศ. 2552

Protocol

โปรโตคอล (Protocol) คือระเบียบพิธีการในการติดต่อสื่อสาร เมื่อมาใช้กับเทคโนโลยีสื่อสารโทรคมนาคม จึงหมายถึงขั้นตอนการติดต่อสื่อสาร ซึ่งรวมถึง กฎ ระเบียบ และข้อกำหนดต่าง ๆ รวมถึงมาตรฐานที่ใช้ เพื่อให้ตัวรับและตัวส่งสามารถดำเนินกิจกรรมทางด้านสื่อสารได้สำเร็จ
แนวคิดด้านสื่อสารข้อมูล
หัวใจในการสื่อสารข้อมูลอยู่ที่ว่าจะทำอย่างไรให้อุปกรณ์สื่อสารต่าง ๆ สื่อสารกันได้อย่างอัตโนมัติ โดยเน้นการสื่อสารที่แตกต่างกันทางด้านเครื่องมือ อุปกรณ์และวิธีการต่าง ๆ เช่น คอมพิวเตอร์เมนเฟรมยี่ห้อหนึ่ง ติดต่อผ่านข่ายสื่อสารไปยังเครื่องคอมพิวเตอร์อีกยี่ห้อหนึ่ง โดยมีผลิตภัณฑ์ที่เชื่อมโยงในระบบสื่อสารที่มาจากหลายบริษัทผู้ผลิต
ด้วยแนวคิดนี้ องค์กรว่าด้วยเครื่องมาตรฐานระหว่างประเทศ หรือที่รู้จักกันในนาม ISO จึงได้วางมาตรฐานโปรโตคอลไว้เป็นระดับ เพื่อให้การสื่อสารต่าง ๆ ยึดหลักการนี้และเรียกมาตรฐานโปรโตคอลนี้ว่า OSI PROTOCOL โดยวางเป็นระดับ 7 ชั้น


การวางมาตรฐานโปรโตคอลต่าง ๆ ของเครือข่าย LAN จะอยู่ในระดับล่าง 2 ระดับเท่านั้น โดยเน้นที่รูปร่างลักษณะของอุปกรณ์ รวมถึงรูปแบบสัญญาณไฟฟ้าที่ส่งรับกันโดยมาตรฐานโปรโตคอล ส่วนนี้จะกำหนดในระดับ 1 (Physical) และวิธีการจะทำให้ข้อมูลข่าวสารจากอุปกรณ์หนึ่งส่งไปยังอีกอุปกรณ์หนึ่งภายในเครือข่ายเดียวกัน อยู่ในโปรโตคอลระดับ 2 เรียกว่า "ระดับดาต้าลิงค์ (Data Link)

การทำงานของระดับโปรโตคอลใน LAN
ระบบ LAN ที่นิยมและแพร่หลายในปัจจุบัน ได้แก่ Ethernet, Token Ring และ FDDI โปรโตคอลที่ใช้ประกอบเป็น LAN ตามมาตรฐานข้อกำหนด จึงจัดอยู่ในระดับโปรโตคอลระดับ 1 และ 2 เท่านั้น

อีเทอร์เน็ต (Ethernet) เป็น LAN ที่มีผู้นิยมใช้กันมาก อีเทอร์เน็ตมีโปรโตคอลในระดับชั้นฟิสิคัล (Physical) ได้หลายรูปแบบ ตามสภาพความเร็วของการรับส่งข้อมูล รูปแบบสัญญาณและตัวกลางที่ใช้รับส่ง การกำหนดชื่อของ LAN แบบนี้ใช้วิธีการกำหนดเป็น XXBASEY เมื่อ XX คือความเร็ว BASE คือวิธีการส่งสัญญาณเป็นแบบ Digital Baseband ส่วน Y คือตัวกลางที่ใช้ส่งสัญญาณ เช่น 10BASE2 หมายถึงส่งความเร็ว 10 เมกะบิต แบบ Thin Ethernet ตัวกลางเป็นสายโคแอกเชียล 10BASE-T หมายถึงส่งความเร็ว 10 เมกะบิต แบบสาย UTP และถ้า 10BASE-FL ก็จะเป็นการใข้สายเส้นใยแก้วนำแสง

สัญญาณทางไฟฟ้าของอีเทอร์เน็ตเป็นแบบดิจิตอล จึงทำให้มีข้อจำกัดในเรื่องระยะทางที่ใช้ระเบียบข้อกำหนดเหล่านี้จึงอยู่ในกลุ่มโปรโตคอลระดับฟิสิคัล ส่วนในระดับโปรโตคอลดาต้าลิงค์เป็นวิธีการกำหนดแอดเดรสระหว่างกันในเครือข่าย ซึ่งแต่ละสถานีจะมีแอดเดรสเป็นตัวเลขขนาด 48 บิต การรับส่งเป็นการสร้างข้อมูลเป็นแพ็กเก็ตเรียกว่า "เฟรม" การส่งข้อมูลมีวิธีการใส่ข้อมูลแอดเดรสต้นทางและปลายทางและส่งกระจายออกไป ผู้รับจะตรวจสอบแอดเดรสของเฟรมถ้าตรงกับแอดเดรสตนก็จะรับข้อมูลเข้ามา

FDDI เป็น LAN อีกชนิดหนึ่งที่ใช้เส้นใยแก้วนำแสงเป็นตัวกลางมีความเร็วในการรับส่ง 100 เมกะบิตต่อวินาที รูปแบบของเครือข่ายเป็นแบบวงแหวน การรับส่งภายในวงแหวนใช้โปรโตคอลแบบโทเก็นพาสซิ่ง (Token Passing)
โทเก็นริง (Token Ring) ระบบ LAN ที่ใช้โครงสร้างเชื่อมโยงแบบวงแหวน แต่ใช้ตัวกลางเป็นสาย UTP การรับส่งสัญญาณเป็นแบบ Digital Baseband ความเร็วในการรับส่งมีทั้งแบบ 4 เมกะบิตต่อวินาที และ 16 เมกะบิตต่อวินาที
การกำหนดโปรโตคอลใน FDDI และ Token Ring ในระดับดาต้าลิงค์ ใช้รูปแบบข้อมูลเป็นเฟรม อุปกรณ์แต่ละตัวมีแอดเดรสประจำ การรับส่งข้อมูล ส่งต่อตามบำดับตามเส้นทางของสายต่อที่เป็นวงแหวน ตัวรับจะตรวจสอบแอดเดรส ซึ่งตัวตรงกับของตนก็จะคัดลอกข้อมูลขึ้นมา แล้วตอบรับว่าได้รับข้อมูลนั้นแล้ว
จะเห็นได้ชัดว่า โปรโตคอลของ LAN ใน 2 ระดับล่าง เป็นการสื่อสารกันในกลุ่มของตนเอง ภายใต้กลุ่ม LAN นั้น ๆ เท่านั้น เช่น ถ้าเป็น Ethernet ก็จะสื่อสารกันในอุปกรณ์ที่ต่ออยู่ในกลุ่มนั้นเท่านั้น
เมื่อนำ LAN ต่างกลุ่มมาต่อเชื่อมรวมกัน การเชื่อมรวมกันนี้อาจเป็น LAN ที่ใช้โปรโตคอลเหมือนกัน หรือต่างกันก็ได้ เช่น นำ Ethernet มาเชื่อมต่อกับ Ethernet หรือ Ethernet กับ Token Ring การเชื่อมต่อระหว่าง LAN ด้วยกันนี้ จำเป็นต้องมีโปรโตคอล ช่วยในการติดต่อระหว่างกัน โปรโตคอลในระดับนี้จึงอยู่ในชั้นระดับสามคือ โปรโตคอลชั้นเน็ตเวิร์ค

โปรโตคอลชั้นเน็ตเวิร์ค
ในระดับสามนี้ทำหน้าที่เชื่องโยงระหว่างเครือข่ายย่อย เราอาจเรียกโปรโตคอลนี้ว่า เราติ้งโปรโตคอล (Routing Protocol) การกำหนดเส้นทางนี้จะต้องวางมาตรฐานกลางสำหรับการเชื่อมโยงอุปกรณ์ ซึ่งมาจากระดับล่างหลาย ๆ มาตรฐาน วิธีการหนึ่งที่นิยมคือ การกำหนดแอดเดรสของอุปกรณ์ระดับล่างใหม่ และให้แอดเดรสเป็นมาตรฐานกลาง เช่น การใช้โปรโตคอลดินเตอร์เน็ต (IP) ทุกอุปกรณ์มีแอดเดรสของตนเองมีการสร้างรูปแบบฟอร์แมตข้อมูลใหม่ที่เรียกว่า แพ็กเก็ต (Packet) ดังนั้น โปรโตคอลในระดับนี้จึงรับส่งข้อมูลกันเป็นแพ็กเก็ต ทุกแพ็กเก็ตมีการกำหนดแอดเดรสต้นทางและปลายทางโดยไม่ต้องคำนึงว่าระดับล่างที่ใช้นั้นคืออะไร
อุปกรณ์ที่ทำหน้าที่รับส่ง และรับรู้โปรโตคอลในระดับเน็ตเวิร์คนี้จะทำหน้าที่เป็นแปลงแพ็กเก็ตให้เข้าสู่เฟรมข้อมูลในระดับสอง และรับเฟรมข้อมูลระดับสองเปลี่ยนมาเป็นแพ็กเก็ตในระดับสามเช่นกัน ข้อเด่นในที่นี้ คือ ทำให้สามารถเชื่อม LAN ทุกมาตรฐานเข้าด้วยกันได้ ในระดับนี้ยังมีมาตรฐานโปรโตคอลอื่น ๆ เช่น IPX ของบริษัทแน็ตแวร์ เป็นต้น
ลองนึกเลยต่อไปว่า ขณะที่เราใช้โปรแกรมวินโดว์ส 95 เป็นเครื่องไคลแอนต์ (Client) ต่อเข้าสู่อินเทอร์เน็ตเชื่อมไปยังเครื่องให้บริการ (เซิร์ฟเวอร์) เครื่องใดเครื่องหนึ่ง นั่นหมายความว่า เราเชื่อมกันในระดับ 3 คือใช้ IP โปรโตคอล ทำให้ไม่ต้องคำนึงว่าทางฝ่ายไคลแอนต์หรือเซิร์ฟเวอร์ใช้ LAN แบบใด
เครื่องไคลแอนต์ที่ใช้วินโดว์ส 95 ทำให้สามารถเปิดงานได้หลาย ๆ วินโดว์สพร้อมกันได้ ดังนั้นในเครื่องหนึ่งมีแอดเดรสในระดับสามตัวเดียว เชื่อมไปยังเซิร์ฟเวอร์ที่มีแอดเดรสในระดับสามตัวเดียวเช่นกัน แต่เปิดงานหลายงานได้ ดังนั้นจึงจำเป็นต้องสร้างโปรโตคอลในระดับสี่ แยกงานต่าง ๆ เหล่านี้ออกจากกันเราเรียกว่า โปรโตคอลระดับ 4 ว่า "ทรานสปอร์ต" (Transport)"
ในระดับ 4 ก็มีแอดเดรสแยกอีก แต่คราวนี้เราเรียกว่า "หมายเลขพอร์ต" ซึ่งจะทำให้ตัวรับและตัวส่ง ทั้งฝ่ายไคลแอนต์และเซิร์ฟเวอร์ติดต่อแอดเดรสIP เดียวกัน แต่แยกกันด้วยโปรโตคอลระดับ 4 ในกรณีของอินเทอร์เน็ตจึงมีโปรโตคอล TCP (Transmission Control Protocol) เป็นตัวแยกที่ทำให้คอมพิวเตอร์เครื่องหนึ่งสามารถติดต่อกับเครื่องอื่นได้หลาย ๆ งานพร้อมกัน
การแบ่งแยกกลุ่มโปรโตคอลนี้เป็นหนทางอันชาญฉลาดของผู้ออกแบบที่ทำให้ระบบสื่อสารข้อมูลดำเนินไปอย่างมีระบบ จนสามารถประยุกต์ใช้งานได้อย่างกว้างขวาง

ระบบเครือข่าย คือ อะไร

Computer Network


ระบบเครือข่าย หรือระบบเน็ตเวิร์ก (Network) คือระบบที่มีการนำคอมพิวเตอร์มากกว่า 1 เครื่อง มาเชื่อมต่อเข้าเป็นระบบเดียวกัน เพื่อให้สามารถติดต่อสื่อสารถึงกันในระบบได้ และสามารถใช้ ประโยชน์จากทรัพยากรหรืออุปกรณ์ต่าง ๆ ในระบบร่วมกันได้ ระบบเน็ตเวิร์กมีตั้งแต่ขนาดเล็ก หรือที่เรียกว่า Home Network ที่มีจำนวนเครื่องในระบบไม่มากนัก ซึ่งระบบนี้รู้จักกันดีใน ชื่อว่าระบบ LAN (Local Area Network) โดยมากจะนิยมใช้ในบ้านหรือหน่วยงานขนาดเล็กและ ขนาดกลาง สำหรับหน่วยงานขนาดใหญ่หรือหน่วยงานที่มีสาขาต่าง ๆ มาก อยู่ในหลายพื้นที่และต้องการติดต่อสื่อสารถึงกันผ่านทางระบบเครือข่ายลักษณะนี้จะเป็น ระบบเน็ตเวิร์กขนาดใหญ่ หรือ WAN(Wide Area Network) ซึ่งระบบ WAN นี้เป็นระบบเครือข่ายคอมพิวเตอร์ในการเชื่องกันเป็นบริเวณกว้าง เช่น ระดับจังหวัด ระดับประเทศ เป็นต้น ระบบนี้จำเป็นต้องมีอุปกรณ์สำหรับเชื่อมต่อมากมายและราคาแพง การเชื่อมต่อนั้นอาจจะใช้สายโทรศัพท์ , สายเคเบิล , เส้นใยแก้วนำแสง (Optical fiber) หรือดาวเทียมก็ได้และระบบเครือข่ายอีกระบบหนึ่งที่รู้จักกันดีนั้นก็คือ Internet ระบบอินเตอร์เน็ตเป็นการเชื่อมโยง ระบบเครือข่ายคอมพิวเตอร์ทั่วโลกเข้าด้วยกัน ทำให้สามรถติดต่อสื่อสารถึงกันได้ทั่วโลกโดยที่เสียค่าใช้จ่ายน้อยมาก เมื่อเปรียบเทียบกับการติดต่อสื่อสารวิธีอื่น ๆ

วันพฤหัสบดีที่ 5 มีนาคม พ.ศ. 2552

โครงสร้าง TopoLogy

Network Topology
(โครงสร้างของเครือข่าย )

โครงสร้างของเครือข่ายหรือภาษาทางเทคนิคเรียกว่า "Topology" คือลักษณะการเชื่อต่อทางกายภาพระหว่างอุปกรณ์คอมพิวเตอร์ต่าง ๆ ในระบบเครือข่าย ซึ่งหากจะแบ่งประเภทของโครงสร้างเครือข่ายกันจริง ๆ ตามหลักวิชาการที่ใช้กันมาตั้งแต่สมัยก่อน ๆ นั้น ก็สามารถแบ่งออกได้เป็น 4 แบบคือ

1. โครงสร้างแบบสตาร์ (Star Network)
2. โครงสร้างแบบบัส ( Bus Network)
3. โครงสร้างแบบริง ( Ring Network)
4. โครงสร้างแบบเมซ ( Mesh Network)


โครงสร้างแบบสตาร์ ( Star Network)
ลักษณะการเชื่อมต่อของโครงสร้างแบบสตาร์จะคล้าย ๆ กับดาวกระจาย ดังรูปที่ได้แสดงไว้ คือมีอุปกรณ์ประเภท Hub หรือ Switch เป็นศูนย์กลางการเชื่อมต่อแบบนี้มีประโยชน์คือ เวลาที่มีสายเส้นใดเส้นหนึ่งหลุดหรือเสียก็จะไม่มีผลต่อการทำงานของระบบโดยรวมแต่อย่างใด นอกจากนี้หากต้องการเพิ่มเครื่องคอมพิวเตอร์เข้าไปในเครือข่ายก็สามารถทำได้ทันทีโดยไม่ต้องหยุดการทำงานของเครือข่ายก่อน การต่อแบบสตาร์นี้เป็นแบบที่นิยมมากในปัจจุบัน เนื่องจากราคาอุปกรณ์ที่มาใช้เป็นศูนย์กลางอย่าง Hub หรือ Switch ลดลงมากในขณะที่ประสิทธิภาพหรือความเร็วเพิ่มขึ้นเรื่อย ๆ จนปัจจุบันได้ความเร็วถึงระดับของกิกาบิต ( 1,000 Mbps) แล้ว




รูปของโครงสร้างแบบสตาร์ ( Star network)

ข้อดี
- การติดตั้งเครือข่ายและการดูแลรักษาทำ ได้ง่าย หากมีเครื่องใดเกิดความเสียหาย ก็สามารถตรวจสอบได้ง่าย และศูนย์ กลางสามารถตัดเครื่องที่เสียหายนั้นออกจากการสื่อสาร ในเครือข่ายได้เลย โดยไม่มีผลกระทบกับระบบเครือข่าย

ข้อเสีย
- เสียค่าใช้จ่ายมาก ทั้งในด้านของเครื่องที่จะใช้เป็น เครื่องศูนย์กลาง หรือตัว HUB เอง และค่าใช้จ่ายในการติดตั้งสายเคเบิลในเครื่องอื่น ๆ ทุกเครื่อง การขยายระบบให้ใหญ่ขึ้นทำได้ยาก เพราะการขยายแต่ละครั้ง จะต้องเกี่ยวเนื่องกับเครื่องอื่นๆ ทั้งระบบ


โครงสร้างเครือข่ายแบบบัส (Bus Network)
คือลักษณะการเชื่อมต่อแบบอนุกรม โดยใช้สายเคเบิลเส้นยาวต่อเนื่องกันไปดังรูปที่ได้แสดงไว้ โครงสร้างแบบนี้มีจุดอ่อนคือเมื่อคอมพิวเตอร์ตัวใดตัวหนึ่งมีปัญหากับสายเคเบิล ก็จะทำให้เครือข่ายรวนไปทั้งระบบ นอกจากนี้เมื่อมีการเพิ่มคอมพิวเตอร์เข้าไปในเครือข่าย อาจต้องหยุดการใช้งานของระบบเครือข่ายก่อน เพื่อตัดต่อสายเข้าเครื่องใหม่ ส่วนข้อดีคือโครงสร้างแบบบัสนี้ไม่ต้องมีอุปกรณ์อย่าง Hub หรือ Switch ใช้เพียงเส้นเดียวก็สามารถเชื่อมต่อเป็นเครือข่ายขนาดเล็กที่มีจำนวนเครื่องไม่มาก ปัจจุบันไม่ค่อยใช้กันแล้ว เนื่องจากไม่มีการพัฒนาเทคโนโลยีใหม่ ๆ เพิ่มเติม ทำให้ความเร็วถูกจำกัดอยู่ที่ 10 Mbps และถูกทดแทนโดยการเชื่อมต่อแบบสตาร์



รูปแบบโครงสร้างเครือข่ายแบบบัส ( Bus Network)

โครงสร้างแบบริง ( Ring Network)
โครงสร้างแบบนี้คอมพิวเตอร์หรืออุปกรณ์จะถูกเชื่อมต่อเข้ากับสายเคเบิลเส้นเดียวเป็นวงแหวนดังรูปที่ได้แสดงไว้ การส่งข้อมูลจะใช้ทิศทางเดียวกันตลอดโดยผ่านเครื่องคอมพิวเตอร์ที่อยู่ถัดกันไปเป็นทอด ๆ ถ้าแอดเดรสของมันไม่ตรงกับผู้รับตามที่เครื่องต้นระบุมา มันก็จะส่งผ่านไปยังเครื่องถัดไป จนกว่าจะถึงเครื่องปลายคือตรงกับใครเครื่องนั้นก็รับ ไม่ส่งต่อ โครงสร้างแบบนี้มีข้อเสียคล้าย ๆ กับแบบบัส คือเมื่อสายเคเบิลช่วงใดช่วงหนึ่งขาดจะทำให้ทั้งระบบใช้งานไม่ได้ อย่างไรก็ตามเครือข่ายแบบวงแหวนมักใช้สายเคเบิลที่มีวงแหวนสำรองที่สามารถส่งข้อมูลในทิศทางกลับกัน เพื่อเป็นเส้นทางสำรองในกรณีที่เครือข่ายมีปัญหา ซึ่งราคาแพงพอสมควร นอกจากนี้การเพิ่มเครื่องเข้าไปในเครือข่ายจะต้องปิดการทำงานของระบบก่อนเช่นเดียวกับแบบบัส เครือข่ายแบบนี้ปัจจุบันยังใช้กันอยู่ โดยเฉพาะในเครือข่ายของผลิตภัณฑ์ในตระกูล IBM ซึ่งโดยมากจะเป็นการเชื่อมต่อเครื่องเมนเฟรมหรือมินิคอมพิวเตอร์




รูปแบบโครงสร้างแบบริง ( Ring Network)

ข้อดี
- ผู้ส่งสามารถส่งข้อมูลไปยังผู้รับได้หลาย ๆ เครื่องพร้อม ๆ กัน โดยกำหนดตำแหน่งปลายทางเหล่านั้นลงในส่วนหัวของแพ็กเกจข้อมูล Repeaterของแต่ละเครื่องจะทำการตรวจสอบเองว่า ข้อมูลที่ส่งมาให้นั้น เป็นตนเองหรือไม่
- การส่งผ่านข้อมูลในเครือข่ายแบบ RING จะเป็นไปในทิศทางเดียวจากเครื่องสู่เครื่อง จึงไม่มีการชนกันของสัญญาณ ข้อมูลที่ส่งออกไป
- คอมพิวเตอร์ทุกเครื่องในเน็ตเวิร์กมีโอกาสที่จะส่งข้อมูลได้อย่างทัดเทียมกัน



ข้อเสีย
- ถ้ามีเครื่องใดเครื่องหนึ่งในเครือข่ายเสียหาย ข้อมูลจะไม่สามารถส่งผ่านไปยังเครื่องต่อ ๆ ไปได้ และจะทำให้เครือข่ายทั้งเครือข่าย หยุดชะงักได้
- ขณะที่ข้อมูลถูกส่งผ่านแต่ละเครื่อง เวลาส่วนหนึ่งจะสูญเสียไปกับการที่ทุก ๆ Repeater จะต้องทำการตรวจสอบตำแหน่งปลายทางของข้อมูลนั้น ๆ ทุก ข้อมูลที่ส่งผ่านมาถึง


โครงสร้างเครือข่ายแบบเมซ (Mesh Network)
เป็น Topology ที่ถือว่าป้องกันการผิดพลาดที่อาจเกิดขึ้นกับระบบได้ดีที่สุด ทั้งนี้เนื่องจากเราเดินสาย Cable ไปเชื่อม ต่อกับ Station ทุก Station โดยเมื่อสายจาก Station ใดเกิดมีปัญหาขึ้นก็จะยังสามารถใช้สายอื่นที่เหลืออีกได้ ระบบนี้ยากต่อการ เดินสายและมีราคาแพงมาก จึงยังไม่เป็นที่นิยมมากนัก



โครงสร้างเครือข่ายแบบเมซ ( Mesh Network)


โครงสร้างเครือข่ายแบบต้นไม้ (Tree Topology)
มีลักษณะเชื่อมโยงคล้ายกับโครงสร้างแบบดาวแต่จะมีโครงสร้างแบบต้นไม้ โดยมีสายนำสัญญาณแยกออกไปเป็นแบบกิ่งไม่เป็นวงรอบ โครงสร้างแบบนี้จะเหมาะกับการประมวลผลแบบกลุ่มจะประกอบด้วยเครื่องคอมพิวเตอร์ระดับต่างๆกันอยู่หลายเครื่องแล้วต่อกันเป็นชั้น ๆ ดูราวกับแผนภาพองค์กร แต่ละกลุ่มจะมีโหนดแม่ละโหนดลูกในกลุ่มนั้นที่มีการสัมพันธ์กัน การสื่อสารข้อมูลจะผ่านตัวกลางไปยังสถานีอื่นๆได้ทั้งหมด เพราะทุกสถานีจะอยู่บนทางเชื่อม และรับส่งข้อมูลเดียวกัน ดังนั้นในแต่ละกลุ่มจะส่งข้อมูลได้ทีละสถานีโดยไม่ส่งพร้อมกัน



โครงสร้างเครือข่ายแบบต้นไม้ (Tree Topology)

รูปแบบการเชื่อมต่อของเครือข่ายโทโพโลยีแบบสมบูรณ์ (full connected or complete topology)
เป็นการเชื่อมโยงคอมพิวเตอร์ทุกเครื่องในเครือข่ายเข้าด้วยกันแบบจุดต่อจุด คอมพิวเตอร์และอุปกรณ์ทุกๆ ตัว มีสายหรือสื่อส่งข้อมูลต่อเฉพาะระหว่างอุปกรณ์แต่ละตัว ทำให้มองดูเหมือนกับว่าระหว่างอุปกรณ์ 2 ตัวมีถนนที่ใช้เฉพาะ 2 อุปกรณ์นั้นๆ ดังนั้นถ้าเรามีอุปกรณ์ n ตัว แต่ละตัวต้องมีช่องทางสื่อสาร (channel) เท่ากับ n- 1 ช่อง และมีช่องทางทั้งหมดในเครือข่ายเท่ากับ n ( n-1)/2 ช่อง ดังแสดงในรูปภาพ

ข้อดี
- มีความเร็วในการสื่อสารข้อมูลสูง โปรแกรมที่ใช้ในการควบคุมการสื่อสารก็เป็นแบบพื้นฐานไม่ซับซ้อนมากนัก
- สามารถรับส่งข้อมูลได้ปริมาณมากและไม่มีปัญหาเรื่องการจัดการการจราจรในสื่อส่งข้อมูลไม่เหมือนกับแบบที่ใช้สื่อส่งข้อมูลร่วมกัน
- มีความทนทานต่อความเสียหายเมื่อสื่อส่งข้อมูลหรือสายใดสายหนึ่งเสียหายใช้การไม่ได้ ไม่ส่งผลต่อระบบเครือข่ายโดยรวม แต่เกิดเสียหายเฉพาะเครื่องต้นสายและปลายสายเท่านั้น
- ระบบเครือข่ายมีความปลอดภัยหรือมีความเป็นส่วนตัว เมื่อข่าวสารถูกรับส่งโดยใช้สายเฉพาะระหว่าง 2 เครื่องเท่านั้น เครื่องอื่นไม่สามารถเข้าไปใช้สายร่วมด้วย
- เนื่องจากโทโพโลยีแบบสมบูรณ์เป็นการเชื่อมต่อแบบจุดต่อจุด ทำให้เราสามารถแยกหรือระบุเครื่องหรือสายที่เสียหายได้ทันที ช่วยให้ผู้ดูแลระบบแก้ไขข้อผิดพราดหรือจุดที่เสียหายได้ง่าย


ข้อเสีย
- จำนวนสายที่ใช้ต้องมีจำนวนมากและอินพุด / เอาต์พุตพอร์ต (i / o port ) ต้องใช้จำนวนมากเช่นกัน เพราะแต่ละเครื่องต้องต่อเชื่อมไปยังทุก ๆ เครื่องทำให้การติดตั้งหรือแก้ไขระบบทำได้ยาก
- สายที่ใช้มีจำนวนมาก ทำให้สิ้นเปลืองพื้นที่ในการเดินสาย
- เนื่องจากอุปกรณ์ต้องการใช้อินพุด / เอาต์พุตพอร์ตจำนวนมาก ดังนั้นราคาของอุปกรณ์ต่อเชื่อมจึงมีราคาแพงและจากข้อเสียข้างต้นทำให้โทโพโลยีแบบสมบูรณ์จึงถูกทำไปใช้ค่อนข้างอยู่ในวงแคบ



รูปแบบการเชื่อมต่อของเครือข่ายโทโพโลยีแบบสมบูรณ์ (full connected or complete topology)

โทโพโลยีแบบผสม ( Hybrid Topology)

เป็นเครือข่ายที่ผสมผสานโทโพโลยีแบบต่างๆ เข้าด้วยกัน เป็นเครือข่ายขนาดใหญ่เพียงเครือข่ายเดียว เช่น การเชื่อมเครือข่ายแบบวงแหวน แบบดาว และแบบบัสเข้าเป็นเครือข่ายเดียวกัน
เครือข่ายบริเวณกว้าง (WAN) เป็นตัวอย่างที่ใช้ลักษณะโทโพโลยีแบบผสมที่พบเห็นมากที่สุด เครือข่ายแบบนี้จะเชื่อมต่อทั้งเครือข่ายขนาดเล็กและขนาดใหญ่ หลากหลายที่เข้าด้วยกัน ซึ่งอาจจะถูกเชื่อมต่อจากคนละจังหวัด หรือคนละประเทศก็ได้ ตัวอย่างเช่น บริษัทที่มีสาขาแยกย่อยตามจังหวัดต่าง ๆ สาขาที่หนึ่งอาจจะใช้โทโพโลยีแบบดาว อีกสาขาหนึ่งอาจใช้โทโพโลยีแบบบัส การเชื่อมต่อเครือข่ายเข้าด้วยกันอาจใช้สื่อกลางเป็นไมโครเวฟ หรือดาวเทียม เป็นต้น
การเข้าถึงระยะไกล
ผู้ใช้สามารถเชื่อมต่อกับเครือข่ายจากระยะไกล เช่น อยู่ที่บ้าน ในการเชื่อมต่อก็จะใช้คอมพิวเตอร์สั่งโมเด็มหมุนสัญญาณให้วิ่งผ่านสายโทรศัพท์ไปเชื่อมต่อกับเครือข่าย หลักจากนั้นผู้ใช้ก็สามารถเรียกใช้ข้อมูลได้เสมือนกับว่ากำลังใช้เครือข่ายที่บริษัทอยู่
การบริหารเครือข่าย
เนื่องจากเครือข่ายเกิดจากการผสมแต่ละโทโพโลยีเข้าด้วยกัน ฉะนั้นรายละเอียดทางเทคนิคต่าง ๆ ของแต่ละเครือข่ายย่อยก็จะแตกต่างกันไป ดังนั้นจึงต้องแต่งตั้งผู้ดูแลบริหารเครือข่ายขึ้นมาทำหน้าที่ตรงนี้
โทโพโลยีทางกายภาพ
โทโพโลยีทางกายภาพ เป็นลักษณะการเชื่อมต่อฮาร์ดแวร์ทั้งหมดในเครือข่ายจริง ๆ ซึ่งพิจารณาใน 2 ลักษณะคือ
รูปแบบในการเชื่อมต่ออุปกรณ์ และลักษณะการจัดวางอุปกรณ์ต่างๆ ในเครือข่าย
รูปแบบการเชื่อมต่อ (type of connection)
- แบบจุดต่อจุด (point – to - point )
- แบบหลายจุด (multipont หรือ multidrop lime )
การจัดวางเครือข่าย
- การจัดวางเครือข่ายแบบรวมศูนย์ (centralized network layout)
- การจัดวางเครือข่ายแบบกระจาย (distributed network layout)
รูปแบบการเชื่อมต่อ (type of connection)
หมายถึง วิธีการที่อุปกรณ์ตั้งแต่ 2 วิธีการที่อุปกรณ์ตั้งแต่ 2 อุปกรณ์ เชื่อมต่อกันด้วยสื่อส่งข้อมูล (transmission link) 1 สื่อ สื่อส่งข้อมูลเป็นลักษณะทางกายภาพ (physical ) และไม่จำเป็นต้องเป็นสายทองแดงอย่างเดียวอาจเป็นคลื่นวิทยุหรือคลื่นอื่นๆ สื่อส่งข้อมูลทำหน้าที่เป็นเส้นทางให้ข้อมูลข่าวสารเดินทางจากอุปกรณ์หนึ่งไปอีกอุปกรณ์หนึ่ง หรือไปยังอุปกรณ์หลายๆ ตัวได้ สื่อส่งข้อมูลได้แก่ สายทองแดง สายใยแก้วนำแสง คลื่นแม่เหล็กไฟฟ้า เป็นต้น รูปแบบการติดตั้งสายมี 2 แบบ ได้แก่
1. แบบจุดต่อจุด
แบบจุดต่อจุด (point-to-point) คือ วิธีเชื่อมต่อสื่อสงข้อมูลระหว่างอุปกรณ์ 2 อุปกรณ์ โดยมีเส้นทางเพียง 1 เส้นเท่านั้น เช่น ลักษณะการเชื่อมต่อระหว่างเครื่องคอมพิวเตอร์พีซีแต่ละเครื่องมีเพียงสายเพียง 1 สายต่อเชื่อมโยงกันในการทำงาน หรือในเครื่องที่ทำหน้าที่เป็นเครื่องปลายทาง 1 เครื่อง เชื่อมต่อกับเครื่องเมนเฟรมโดยใช้สาย 1 เส้น หรือในอีกกรณีหนึ่งเครื่องคอมพิวเตอร์ 2 เครื่องสื่อสารกันโดยใช้การส่งข้อมูลผ่านคลื่นไมโครเวฟ ดังรูป


2. แบบหลายจุดหรือมัลติดรอปไลน์
แบบหลายจุด หรือ มัลติดรอปไลน์ (multidrop lime) หมายถึง สื่อส่งข้อมูล 1 สื่อ มีอุปกรณ์หลายๆ อุปกรณ์ ใช้สื่อส่งข้อมูลหรือสายร่วมกันดังรูปที่ 2.3 นอกจากนี้ถ้าสื่อส่งข้อมูลเป็นคลื่นวิทยุ แบบหลายจุดใช้คลื่นวิทยุในอากาศร่วมกันการใช้คลื่นวิทยุร่วมกัน ทำได้โดยแบ่งความถี่ออกเป็นช่วงความถี่ของอุปกรณ์แต่ละตัวซึ่งถือว่าเป็นการใช้สื่อสงข้อมูลร่วมกันในแบบแบ่งส่วนที่เรียกว่า การแบ่งปันส่วน (spatially share ) หรืออาจผลัดกันใช้สื่อส่งข้อมูลโดยกำหนดระยะเวลาการใช้ที่เรียกว่า การแบ่งปันเวลา ( time share )